5a^2+210=770

Simple and best practice solution for 5a^2+210=770 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5a^2+210=770 equation:



5a^2+210=770
We move all terms to the left:
5a^2+210-(770)=0
We add all the numbers together, and all the variables
5a^2-560=0
a = 5; b = 0; c = -560;
Δ = b2-4ac
Δ = 02-4·5·(-560)
Δ = 11200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11200}=\sqrt{1600*7}=\sqrt{1600}*\sqrt{7}=40\sqrt{7}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{7}}{2*5}=\frac{0-40\sqrt{7}}{10} =-\frac{40\sqrt{7}}{10} =-4\sqrt{7} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{7}}{2*5}=\frac{0+40\sqrt{7}}{10} =\frac{40\sqrt{7}}{10} =4\sqrt{7} $

See similar equations:

| (x/10)+-3=25 | | 74=2t | | (-3)=2(4x2-5)-15 | | -4+4n=0 | | 5(10^x)=22 | | 2x+x-9=x+7 | | 3|x-17|+7=7 | | -3x+2=−3x+2=2x+37 | | -3r-10=44 | | 2(y+2)-y=2(y-1)+9 | | 1.5+.6x=13.50 | | -233=-w+18 | | 5h-10=h+10 | | 20y+16=16y-16 | | (x+3)+(3x-4)=180 | | 7x+11=10x=-2+3 | | 9/x=63 | | 6x/5=27 | | 9x+1–7x–5=−20 | | 5(x-2)+1=1+2x-9+3x | | 18x+30=105 | | 6(x+2)=4x+26 | | 0.6k+0.8k=0.8+0.9 | | 11x-5(x+2)=(x=5) | | -8(x-1)=-6x+20 | | Y+2=3/4(x-5) | | -18+x=5 | | 223=-w+18 | | −3(x+8)=30 | | 3g+4​(−5+2​g)=1−g | | 5p-4=86 | | 7b+3-46=3-3(6+4) |

Equations solver categories